Nonlinear control is the area of control engineering specifically involved with systems that are nonlinear, time-variant, or both. Many well-established analysis and design techniques exist for LTI systems (e.g., root-locus, Bode plot, Nyquist criterion, state-feedback, pole placement); however, one or both of the controller and the system under control in a general control system may not be an LTI system, and so these methods cannot necessarily be applied directly. Nonlinear control theory studies how to apply existing linear methods to these more general control systems. Additionally, it provides novel control methods that cannot be analyzed using LTI system theory. Even when LTI system theory can be used for the analysis and design of a controller, a nonlinear controller can have attractive characteristics (e.g., simpler implementation, increased speed, or decreased control energy); however, nonlinear control theory usually requires more rigorous mathematical analysis to justify its conclusions.
Contents |
Some properties of nonlinear dynamic systems are
There are several well-developed techniques for analyzing nonlinear feedback systems:
Control design techniques for nonlinear systems also exist. These can be subdivided into techniques which attempt to treat the system as a linear system in a limited range of operation and use (well-known) linear design techniques for each region:
Those that attempt to introduce auxiliary nonlinear feedback in such a way that the system can be treated as linear for purposes of control design:
And Lyapunov based methods:
An early nonlinear feedback system analysis problem was formulated by A. I. Lur'e. Control systems described by the Lur'e problem have a forward path that is linear and time-invariant, and a feedback path that contains a memory-less, possibly time-varying, static nonlinearity.
The linear part can be characterized by four matrices (A,B,C,D), while the nonlinear part is Φ(y) with (a sector nonlinearity).
Consider:
The problem is to derive conditions involving only the transfer matrix H(s) and {a,b} such that x=0 is a globally uniformly asymptotically stable equilibrium of the system. This is known as the Lur'e problem.
There are two main theorems concerning the problem:
The sub-class of Lur'e systems studied by Popov is described by:
where x ∈ Rn, ξ,u,y are scalars and A,b,c,d have commensurate dimensions. The nonlinear element Φ: R → R is a time-invariant nonlinearity belonging to open sector (0, ∞). This means that
The transfer function from u to y is given by
Theorem: Consider the system (1)-(2) and suppose
then the system is globally asymptotically stable if there exists a number r>0 such that
infω ∈ R Re[(1+jωr)h(jω)] > 0 .
Things to be noted:
The Frobenius theorem is a deep result in Differential Geometry. When applied to Nonlinear Control, it says the following: Given a system of the form
where , are vector fields belonging to a distribution and are control functions, the integral curves of are restricted to a manifold of dimension if span( and is an involutive distribution.